THE CHERN CLASSES OF THE EIGENBUNDLES OF AN AUTOMORPHISM OF A CURVE

BY

ISRAEL MORENO MEJfA*

Department of Mathematics and Computer Science, Bar Ilan University 52900 Ramat Gan, Israel e-mail: morenoi@macs.biu.ac.il

ABSTRACT

Let X be smooth complex projective curve. Let h be an automorphism of X of order p . We improve a formula to compute the characteristic classes of the normal bundles of certain components of the fixed point set of h acting on the symmetric products of X .

1. Introduction

We consider the following situation. Let $f: X \to Y$ be a finite morphism of degree p between two smooth complex projective curves. Let $S^k X$ denote the k-symmetric product of X. There is a morphism i: $S^k Y \to S^{pk} X$ defined by $i(D) = f^*D$. If Y is the quotient $X/(h)$, where h is an automorphism of X, and if f is the quotient map, then $S^k Y$ can be identified with a component of the fixed point set of h acting on $S^{pk}X$. The normal bundle N_i of this component has a decomposition into eigenbundles $N_i = \bigoplus_{i=1}^{p-1} N_i(\nu^j)$. The problem is to compute the characteristic classes $\mathcal{U}_i(N_i(\nu^j))$ which are required to apply the Holomorphic Lefschetz Theorem; see [2]. Assuming that all the the nontrivial powers of h belong to the same conjugacy class of *Aut(X),* an expression for $\mathcal{U}_i(N_i(\nu^j))$ was obtained in [4]; this was the key for the calculations in [5]. In this work we present an improved version of that formula. Consider the decomposition of $f_*\mathcal{O}_X$ into eigenbundles $f_*\mathcal{O}_X = \bigoplus_{j=0}^{p-1} \mathcal{L}_j$. The eigenbundles

Received December 29, 2004

^{*} The author was supported by the Emmy Noether Research Institute for Mathematics.

 $N_i(\nu^j)$ and \mathcal{L}_j are related by means of an identity that allows us to use the Grothendieck-Riemann-Roch theorem to compute the Chern classes of $N_i(\nu^j)$, which is what we need to compute the characeristic classes of the eigenbundles $N_i(\nu^j)$.

2. The universal divisor

The universal effective divisor of degree d on X is the divisor

$$
\Delta\subset X\times S^dX
$$

that, for any $D \in S^d X$, cuts on $X \cong X \times \{D\}$ exactly the divisor D; we refer to [1] chapter IV, section 2 for more details.

PROPOSITION 2.1: Let $\Delta_Y \subset Y \times S^k Y$ be the *universal divisor and let* $\pi_Y: \Delta_Y \to Y$ and $\pi_{S^k Y}: \Delta_Y \to S^k Y$ be the corresponding projections. Then

$$
i^*T_{S^{pk}X} \cong \pi_{S^kY*}(\mathcal{O}_{\Delta_Y}(\Delta_Y) \otimes \pi_Y^*f_*\mathcal{O}_X).
$$

Proof: Let $\Delta_X \subset X \times S^{pk}X$ be the universal divisor. Consider the divisor $\Delta' = (id_X \times i)^* \Delta_X \subset X \times S^k Y$ with its corresponding projections ρ_X and ρ_{S^kY} . Then from [1], chapter IV, section 2 (Lemma 2.3 and p. 174), we have $i^*T_{S^{pk}X} \cong \rho_{S^kY*}(O_{\Delta'}(\Delta'))$. Notice that $\Delta' = (f \times id_{S^kY})^*\Delta_Y$; see the diagram (Figure 1).

Figure 1.

Let F denote $(f \times id_{S^k V})|_{\Delta'}$. So

$$
i^*T_{S^{pk}X} \cong \pi_{S^kY*}(\mathcal{O}_{\Delta_Y}(\Delta_Y)\otimes F_*\mathcal{O}_{\Delta'}).
$$

On the other hand, since f is a finite morphism and $\Delta' = X \times_Y \Delta_Y$, we have $F_*\mathcal{O}_{\Delta'} = \pi_V^* f_*\mathcal{O}_X.$

If $Y = X/\langle h \rangle$ and f is the quotient map, we have a decomposition

$$
f_*\mathcal{O}_X=\bigoplus_{j=0}^{p-1}\mathcal{L}_j
$$

where \mathcal{L}_j is the subline bundle of $f_*\mathcal{O}_X$ on which the action of h is multiplication by the scalar ν^j , $\nu = e^{2i\pi/p}$. Therefore

$$
i^*T_{S^{pk}X}\cong\bigoplus_{j=0}^{p-1}\pi_{S^kY*}(\mathcal{O}_{\Delta_Y}(\Delta_Y)\otimes\pi_Y^*\mathcal{L}_j).
$$

Now we can use the Grothendieck-Riemann-Roch theorem to compute the chern classes of the vector bundles

$$
i^*T_{S^{pk}X}(\nu^j)=\pi_{S^kY*}(\mathcal{O}_{\Delta_Y}(\Delta_Y)\otimes \pi_Y^*\mathcal{L}_j).
$$

Let $x, \theta \in H^2(S^kY, \mathbb{Z})$ denote respectively the class of the divisor $q + S^{k-1}Y \subset$ S^kY and the pull-back of the class $\theta \in H^2(J_Y, \mathbb{Z})$ to S^kY , where J_Y is the Jacobian variety of Y. With the notation of [3], $\theta = \sum_{i=1}^{g_Y} \sigma_i$, where $\sigma_i^2 = 0$ (see (5.4) in $[3]$; then one can write

(1)
$$
e^{\alpha \theta} = \prod_{i=1}^{g_Y} (1 + \alpha \sigma_i).
$$

LEMMA 2.2: Let n_j be the degree of \mathcal{L}_j . Then

$$
c(i^*T_{S^{pk}X}(\nu^j)) = (1+x)^{k+n_j+1-g_Y}e^{-\theta/(1+x)}.
$$

Proof: The proof is essentially the same as that of Lemma 2.5 in [1], chapter VIII, section 2. Let $\pi_1: Y \times S^k Y \to Y$ and $\pi_2: Y \times S^k Y \to S^k Y$ be the natural projections. Let $L_j = \pi_1^* \mathcal{L}_j$. Consider the exact sequence of sheaves on $Y \times S^k Y$

$$
(2) \t 0 \to L_j \to L_j \otimes \mathcal{O}_{Y \times S^k Y}(\Delta_Y) \to \tau_*(\pi_Y^* \mathcal{L}_j \otimes \mathcal{O}_{\Delta_Y}(\Delta_Y)) \to 0,
$$

where τ stands for the embedding $\Delta_Y \hookrightarrow Y \times S^k Y$. The higher direct images $R^i\pi_{S^kY*}(\pi_Y^*\mathcal{L}_j\otimes\mathcal{O}_{\Delta_Y}(\Delta_Y))$ vanish for $i\geq 1$, so using the Grothendieck-Riemann-Roch theorem we have

$$
td(S^{k}Y)ch(i^{*}T_{S^{pk}X}(\nu^{j}))
$$

= $(\pi_{2})_{*}(td(Y \times S^{k}Y) \cdot ch(L_{j} \otimes \tau_{*}\mathcal{O}_{\Delta_{Y}}(\Delta_{Y})))$
= $(\pi_{2})_{*}(\pi_{1}^{*}(td(Y)) \cdot \pi_{2}^{*}(td(S^{k}Y)) \cdot ch(L_{j} \otimes \tau_{*}\mathcal{O}_{\Delta_{Y}}(\Delta_{Y}))).$

250 I. MORENO MEJÍA Isr. J. Math.

Cancelling out $Td(S^kY)$ and using the exact sequence (2) to compute $ch(L_j \otimes \tau_* \mathcal{O}_{\Delta_Y}(\Delta_Y))$, we get

$$
ch(i^*T_{S^{pk}X}(\nu^j)) = (\pi_2)_*((e^{n_j\eta+\delta}-e^{n_j\eta})(1+(1-g_Y)\eta),
$$

where δ is the class of Δ_Y in $H^2(Y \times S^k Y, \mathbb{Z})$ and η is the pull-back under π_1 of the class of a point in Y. Let $x' = \pi_2^*(x)$, $\theta' = \pi_2^*(\theta) \in H^2(Y \times S^k Y, \mathbb{Z})$. One can write $\delta = x' + \gamma + k\eta$; under the Kunnet decomposition, γ is the component $\delta^{1,1}$ of δ . One has $\gamma^2 = -2\eta\theta'$, $\eta^2 = \eta\gamma = \gamma^3 = 0$; see [1], chapter VIII, section 2, p. 338. Using

$$
e^{\delta} = e^{k\eta + \gamma + x'} = e^{x'} + k\eta e^{x'} - \eta \theta' e^{x'} + \gamma e^{x'},
$$

one gets

$$
e^{n_j \eta + \delta} - e^{n_j \eta} = (1 + n_j \eta)(e^{x'} \cdot (1 + k\eta - \eta \theta' + \gamma) - 1)
$$

= $e^{x'} \cdot (1 + \eta(k - \theta' + n_j) + \gamma) - (1 + n_j \eta);$

then

$$
(e^{n_j\eta+\delta}-e^{n_j\eta})(1+(1-g)\eta) =
$$

$$
e^{x'}\cdot(1+\gamma+\eta(k-\theta'+n_j+1-g_Y))-1-(n_j+1-g_Y)\eta.
$$

Notice $(\pi_2)_*(\delta) = k$, $(\pi_2)_*(\eta) = 1$, $(\pi_2)_*(1) = (\pi_2)_*(x') = 0$; then $(\pi_2)_*(\gamma) = 0$ and

$$
ch(i^*T_{S^{pk}X}(\nu^j)) = e^x \cdot (\pi_2)_*(1 + \gamma + \eta(k - \theta' + n_j + 1 - g_Y)) - (n_j + 1 - g_Y)
$$

= $g_Y - n_j - 1 + (k + n_j + 1 - g_Y - \theta)e^x$.

Now $ch(i^*T_{S^{pk}X}(\nu^j))+Be^{x}$ is the Chern character of something that has Chern class $(1+x)^Bc(i^*T_{S^{pk}X}(\nu^j))$. So the total Chern class can be deduced from the following observation. If $(r - \theta)e^x$ is the Chern character of a rank r vector bundle E on $S^k Y$, then $c(E) = (1+x)^r e^{-\theta/(1+x)}$. To see this, notice that $r - \theta$ can be seen as the Chern character of a rank r vector bundle F with $c(F) = e^{-\theta}$ (one can assume that $r \geq g_Y$ and that the non-zero Chern roots of F are $-\sigma_1,\ldots,-\sigma_{\sigma_Y}$, e^x is the Chern character of a line bundle L with $c(L) = 1 + x$, so $ch(F \otimes L) = (r - \theta)e^{x}$. Then $c(F \otimes L) = (1 + x)^{r - qY} \prod_{i=1}^{qY} (1 - \sigma_i + x) =$ $(1+x)^{r}e^{-\theta/(1+x)}$.

Let $N_i(\nu^j)$ have Chern roots $\{x_s\}$; then the corresponding stable characteristic class is given by

$$
\mathcal{U}_j(N_i(\nu^j))=\prod_s\Big(\frac{1-e^{-x_s}/\nu^j}{1-\nu^{-j}}\Big)^{-1}.
$$

Vol. 154, 2006 CHERN CLASSES 251

Notice from the definition of \mathcal{U}_j that $\mathcal{U}_j(E)$ depends only on the Chern classes $c_i(E)$ of E and not on the x_s 's, that is, \mathcal{U}_j is a transformation of polynomials and it satisfies $\mathcal{U}_i(p_1p_2) = \mathcal{U}_i(p_1)\mathcal{U}_i(p_2)$.

As a corollary we have the following

THEOREM 2.3: Let n_i be the degree of \mathcal{L}_i . Then

(a)
$$
U_j(N_i(\nu^j)) = (1 - 1/\nu^j)^A (1 - e^{-x}/\nu^j)^{-A} e^{\theta(\frac{e^{-x}}{\nu^j - e^{-x}})} \left(\frac{1 - e^{-x}/\nu^j}{1 - \nu^{-j}}\right)^{-n_j},
$$

(b)
$$
\prod_{j=1}^{p-1} \mathcal{U}_j(N_i(\nu^j)) = p^A m(e^{-x})^{-A} e^{\theta q(e^{-x})} \prod_{j=1}^{p-1} \left(\frac{1 - e^{-x}/\nu^j}{1 - \nu^{-j}} \right)^{-n_j},
$$

 $where A = k + 1 - g_Y, m(z) = \sum_{i=0}^{p-1} z^i, q(z) =$

Proof: Using equation (1), one can use the proof of Lemma 3.7 in [4].

Remark: Notice that in the case $k = 1$ of Proposition 2.1 one has $i^*T_{S^pX} \cong f_*f^*K_Y^{-1}$ which, by the relative Serre duality, implies that $i^*\Omega_{S^pX}^1 \cong f_*K_X$. Then one can identify $H^0(Y, \mathcal{L}_i^{-1}K_Y)$ with the eigenspace $H^0(X, K_X)(\nu^{-j})$ and, using Riemann-Roch theorem, one can compute the degree of $\mathcal{L}_j^{-1}K_Y$. The decomposition of $H^0(X, K_X)$ into eigenspaces of h can be obtained by applying the Atiyah-Bott fixed point theorem.

Proposition 2.1 also can be used to compute $c(i^*(K_{SpkX}))$. Namely,

$$
c_1(i^*T_{S^{pk}X}) = \sum_{j=0}^{p-1} (k + n_j + 1 - g_Y)x - \theta = (pk + 1 - g_X)x - p\theta.
$$

References

- [1] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, *Geometry of Algebraic Curves,* Springer-Verlag, New York, 1985.
- [2] M. F. Atiyah and I. M. Singer, *The index of elliptic operators III,* Annals of Mathematics 87 (1968), 547-604.
- [3] I. G. Macdonald, *Symmetric products of an algebraic curve*, Topology 1 (1962), 319-343.
- [4] I. Moreno Mejfa, *Characteristic* classes on *symmetric products of curves,* Glasgow Mathematical Journal 46 (2004), 477-488.
- [5] I. Moreno Mejía, *The trace of an automorphism on* $H^0(J, \mathcal{O}(n\Theta))$, Michigan Mathematical Journal 53 (2005), 57-69.