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ABSTRACT

Let X be smooth complex projective curve. Let h be an automorphism
of X of order p. We improve a formula to compute the characteristic
classes of the normal bundles of certain components of the fixed point set
of h acting on the symmetric products of X.

1. Introduction

We consider the following situation. Let f: X — Y be a finite morphism of
degree p between two smooth complex projective curves. Let S¥*X denote the
k-symmetric product of X. There is a morphism i: S*Y — SP*X defined by
(D)= f*D. If Y is the quotient X/(h), where h is an automorphism of X, and
if f is the quotient map, then S*Y can be identified with a component of the
fixed point set of h acting on SP*X. The normal bundle N; of this component
has a decomposition into eigenbundles N; = EB;’;; N;(v7). The problem is to
compute the characteristic classes U;(N; (7)) which are required to apply the
Holomorphic Lefschetz Theorem; see {2]. Assuming that all the the nontrivial
powers of h belong to the same conjugacy class of Aut(X), an expression for
U;(N;(v7)) was obtained in [4]; this was the key for the calculations in [5].
In this work we present an improved version of that formula. Consider the
decomposition of f,Ox into eigenbundles f,Ox = ;’;é L;. The eigenbundles
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N;(?) and L; are related by means of an identity that allows us to use the
Grothendieck-Riemann-Roch theorem to compute the Chern classes of N;(17),
which is what we need to compute the characeristic classes of the eigenbundles

Ni(l/j).

2. The universal divisor

The universal effective divisor of degree d on X is the divisor
AC X x8iX

that, for any D € S?X, cuts on X = X x {D} exactly the divisor D; we refer
to [1] chapter IV, section 2 for more details.

PRrROPOSITION 2.1: Let Ay C Y x S*Y be the universal divisor and let
my: Ay =Y and wgey: Ay — S*Y be the corresponding projections. Then

Tsrex = msry o (Ony (Ay) @ 7y £2Ox).

Proof: Let Ax C X x SP*X be the universal divisor. Consider the divisor
A’ = (idx x i)*Ax C X x S*Y with its corresponding projections px and
psrty- Then from [1], chapter IV, section 2 (Lemma 2.3 and p. 174), we have
*Tooex = pory(Oar(A")). Notice that A’ = (f x idgry)* Ay; see the diagram
(Figure 1).

A Ax
Px

/F \ . idx x4 q X
X X x Sty X x SPkx
f TY AY \ fxidgky
Y / Y x SkY

4 $ Y
Sky SPkX

Figure 1.
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Let F denote (f x idgry) |ar. So
i*Tsrex = msey,(Oay (Ay) ® FOar).

On the other hand, since f is a finite morphism and A’ = X xy Ay, we have
F.Op =73 f:O0x. ]

If Y = X/(h) and f is the quotient map, we have a decomposition

p—1
£0x =@PL;
L/

where L; is the subline bundle of f,Ox on which the action of k is multiplication
by the scalar 19, v = €27/, Therefore

p—1

i*Tgpk x = @ msky «(Oay (Ay) ® y L;).
=0

Now we can use the Grothendieck—-Riemann-Roch theorem to compute the chern
classes of the vector bundles

*Toonx (V) = wory o (Oay (Ay) ® 75 L;).
Let z,0 € H?(S*Y,Z) denote respectively the class of the divisor ¢ + S*~1Y C
S*Y and the pull-back of the class § € H?(Jy,Z) to S*Y, where Jy is the
Jacobian variety of Y. With the notation of [3], 8 = Y97, 0;, where 02 = 0 (see

(5.4) in [3]); then one can write
gy

(1) e*? = H(l + ao;).

i=1
LEMMA 2.2: Let n; be the degree of L;. Then
(i Tgorx (1)) = (1 + z)ktmitl=gv o=0/(1+2)

Proof: The proof is essentially the same as that of Lemma 2.5 in [1], chapter
VIII, section 2. Let m: Y x S¥Y - Y and 73: ¥ x S¥Y — S*Y be the natural
projections. Let L; = m}L;. Consider the exact sequence of sheaves on Y x S*¥Y

(2) 0— L;j — Lj ® Oyxsiy (Ay) = (17 L; ® Oay (Ay)) — 0,
where 7 stands for the embedding Ay < Y x S*¥Y. The higher direct images
Rimgry, (73 L; ® Oa, (Ay)) vanish for i > 1, so using the Grothendieck-

Riemann-Roch theorem we have
td(S*FY )ch(i* Tgpx x (V7))
= (m2)«(td(Y x S*Y) - ch(L; ® T.On, (Ay)))
= (m2)a (] (td(Y)) - 75 (td(S*Y)) - ch(L; ® 7:Oay (Ay)))-
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Cancelling out Td(S*Y) and using the exact sequence (2) to compute
ch(L; ® 1.0, (Ay)), we get

ch(i*Tsomx (7)) = (m2)a ("0 — €M) (1 + (1 - gv')n),
where 4 is the class of Ay in H*(Y x S*Y,Z) and 7 is the pull-back under 7,
of the class of a point in Y. Let 2’ = 7}(z), §' = 75(0) € H*(Y x S*Y,Z). One
can write § = =’ + + kn; under the Kunnet decomposition, v is the component

81 of 6. One has 72 = —2n8', 5% = ny = y® = 0; see [1], chapter VIII, section
2, p. 338. Using

! t ! ! [
e = *MIHT — o | kpe™ — nf'e” + e,

one gets
MMt _eni = (14 nm)(e® - (1+kn—nd +7) —1)
= - (L n(k = 0"+ n5) +7) = (1+ny);
then

(€"™M? — €M) (14 (1 - g)n) =
e (L+v+nk—0+n;+1—gy))—1—(nj +1—gy)n.

Notice (72)«(8) =k, (72)«(n) = 1, (m2)x(1) = (m2)«(z’) = 0; then (m2).(y) =0

and

ch(i*Tomx (VW) = € - (m2)s(L+ v+ 1k = 0"+ nj +1 - gy)) — (nj +1 - gv)
=gy—nj—1+(k+nj+1—gy—0)e“”.

Now ch(i*Tgex x (1)) + Be® is the Chern character of something that has Chern
class (14 x)Bc(i*Tgpx x (17)). So the total Chern class can be deduced from the
following observation. If (r — @)e® is the Chern character of a rank r vector
bundle E on S*Y, then ¢(E) = (1 +z)"e~%/(14+2), To see this, notice that r — 8
can be seen as the Chern character of a rank r vector bundle F with ¢(F) = e=?
(one can assume that r > gy and that the non-zero Chern roots of F' are
—01,...,—0gy ), € is the Chern character of a line bundle L with ¢(L) =1+ =z,
so ch(F®L) = (r—6)e®. Then c(FQL)=(1+z)" 9 [[¥,1-0;+2) =
(1 +x)re—9/(1+z). ]
Let N;(v7) have Chern roots {z,}; then the corresponding stable character-
istic class is given by
A — e~ % fyiy 1
) = [T (2™

8

—_ V_j
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Notice from the definition of I{; that U;(E) depends only on the Chern classes
ci(E) of E and not on the x,’s, that is, U; is a transformation of polynomials
and it satisfies Uj (p1p2) = Uj (p1 )Z/{J (pz).

As a corollary we have the following

THEOREM 2.3: Let n; be the degree of L;. Then

@) U9 = (1= 1) A1 = e AL (L™,

1—~v-d
b I i)y = pA ~a e T (L= eV \™
i - ()™
(b) jlleu]( i) =phmle” H —
where A = k+ 1 — gy, m(z) = Y020 2%, q(2) = —2m/(2)/m(2).
Proof: Using equation (1), one can use the proof of Lemma 3.7 in [4]. [ |
Remark: Notice that in the case £k = 1 of Proposition 2.1 one has
*Torx = f f*K;1 which, by the relative Serre duality, implies that

i*QL, v = f.Kx. Then one can identify HO(Y, £y 'Ky) with the eigenspace
H%(X,Kx)(v~7) and, using Riemann—Roch theorem, one can compute the de-
gree of EJ-‘IKy. The decomposition of H°(X, Kx) into eigenspaces of h can be
obtained by applying the Atiyah-Bott fixed point theorem.
Proposition 2.1 also can be used to compute ¢(i*(Kgprx)). Namely,

p—1

1 Tseex) = Z(k +nj+1—gy)z—0=(pk+1-gx)z—pb.
§=0
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